Course Code ESE-800	Credit Hours (Th-Pr) 3-0	Clean Coal Technologies (Elective)	Contact Hrs/Week (Th-Pr) 3-0	Total Contact Hrs (Th-Pr) 45-0
---------------------------	--------------------------------	---------------------------------------	---------------------------------------	---

Course Outline:

Direct coal liquefaction Indirect coal liquefaction (FT) Hybrid approach to synthesize liquid fuels Clean coal gasification process description Integrated gasification combine cycle (IGCC) Under ground coal gasification (UCG) Carbon capture techniques

Eligibility Criteria:

B.E in Mech., Elect (Power), Chemical, Industrial, Process

B.S (4-years) Or M.Sc. degrees in Physics

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Clean Coal Engineering Technology	Bruce G. Miller	BM	Reference
2.	Emerging clean coal technologies	Paul W. Spaite	PS	Reference
3.	Coal Gasification and Its Applications	David A. Bell, Brian F. Towler	DB	Reference
4.	Coal Liquefaction Fundamentals	D. Duayne Whitehurst	DW	Reference
5.	Fischer Tropsch Technology, Studies in Surface Science and	Andre Steynberg and Mark Dry (Editors)	AM	Reference

	Catalysis 152			
6.	Carbon Capture and	Stephen A. Rackley	SR	Reference
	Storage, 1st Edition			

Course Objectives:

The primary objectives of this course are to familiarize students with clean coal technologies incorporating Gasification/FT in producing accessible energy, to foster technical knowledge beneficial for exploiting the vast coal reserves in the country. To generate the ability of scale up design from pilot plant models.

Learning outcome:

The students will be able to differentiate between various options on clean coal technologies leading to both liquid & gaseous fuels. The course will provide an indepth knowledge to coal utilization through fabrication of catalyst and reactor design.

Topics Covered:

No.	Topics	Book	Contact
			Hours
1.	Coal to liquid (CTL)	DW,	10
	Direct coal liquefaction:		
	 Process description 	BM	
	 Process parameters & flow sheet diagrams 		
	 Heat, pressure & catalyst requirements 		
	 Hydrocracking/Hydrotreating reaction 		
	mechanism and kinetics		
	 Single stage & two stage liquefaction 		
	 DCL catalytic reactors/ overview 		
	 Commercial Plants 		
	 Environmental considerations 		
	Indirect coal liquefaction (FT Process):		
	 Process Description/ Process Flow diagrams 	AM	10
	 Syn gas formation/ composition 		

	 Syn gas cleaning (Hulphur (H2S and COS, 		
	CS2) and CO2 Removal)		
	 FT Process/ Reaction mechanism & kinetics 		
	 FT process parameters 		
	 Catalyst Preparation & Characterization 		
	 FT Reactor core concepts/Process control 		
	 Energy analysis/ Heat exchanger network 		
	optimization in FT synthesis		
	 Products refinery 		
	 Products analysis 		
	Hybrid Concept		
	 Comparison of ICL & DCL 		
	 Hybrid approach description/ Process flow 		
	diagrams		
2.	Clean coal gasification:	DB,	
	- Cool gooification basics/turpos	PS	
	 Coal gasification basics/types 		6
	Pre treatment of coal/ milling, drying		
	Coal gasifier designs/Reaction kinetics		
	Direct blowing & reverse blowing concepts		
	 Air separation and gas cleanup * 		6
	* The CO2 removal used in the gas cleanup can be		
	used as CO2 capture for CCS.		
	Integrated gasification combined cycle: IGCC		
	 Process description 		
	 Thermodynamic cycle of IGCC 		
	 Development of process flow diagram 		6
	 CO₂ pre combustion capture & storage 		
	 Energy requirements 		
	Underground Coal Gasification (UCG)		
	Underground Coal Gasification (UCG)		

	 Technology Description 		
	 Geological aspects in UCG/ coal seam, overburden and water table 		
	 Process flow diagrams 		
	 Channel formation b/w injection & production wells 		
	 Process parameters/Coal & Rock properties 		
	 Economics of UCG 		
3	Carbon dioxide Capture	SR &	7
	• Power Generation technologies incorporating CO ₂	BM	
	Capture		
	CO ₂ Capture Chemical Processes		
	 Amine-based systems 		
	 Ammonia-based systems 		

MS research projects will be based on:

- Micro reactor design and fabrication
- Catalyst preparation & Characterization
- Pilot plant Experimental runs
- Modelling & simulation using Aspen-Hysys